
VisualK-OS Control Center (VKOS_CC)
Documentation [v1.1 – 11/03/2016]

System design and technical documentation: Kevin Slaughter
 slaughkj@miamioh.edu

Table of Contents
1.) System Explanation
2.) Modules (Python Sources)
3.) Program Topology

[Revision History]
v1.1 - Typo corrections, corrected FBA linear diagram to include the 25 pin cable going to the
Arduino.
v1.0 – Initial publication, to accompany the initial release of the source code.

Section 1 – System Explanation

The VisualK-OS Control Center (hereafter referred to as “VKOS_CC”) drives an array of
Arduino-based “slave” devices, allowing for management of the entire lighting system from one
computer. The Control Console, a custom setup that houses a Raspberry Pi (Model B) and various other
goodies, is what will generally be running the Python scripts that comprise the VKOS_CC that this
documentation focuses on. The Control Console and the FBA device are kind of one-in-the-same, but
separate systems. Unlike Thor, the drum lighting module, the FBA device cannot be used as a stand-
alone device (yet…).

The Control Console currently contains the following:
- Dedicated Raspberry Pi (B)

|-- Runs the VKOS_CC, controls all slave devices
|-- PiFace attached by secured breadboard ties, but not yet used.

- 3.5” TFT LCD (composite input)
|-- Kinda shitty display… It works, but everything is tiny.

- Powered USB hub
|-- Helps the rPi properly power numerous slave devices.

- 2 Auxiliary 110/120 AC mains outlets.
- 350W desktop PSU (For powering the FBA, explained later)
- Arduino Uno (For the above-mentioned FBA slave device)

* “FBA” stands for “Flood Bank Array”, which is a dual set of 4 channel RGB LED banks: Each lamp
is approximately 12in², constructed of linked rows of LED strips. Each board also includes a white
LED strip between each line of RGB LEDs for general lighting and strobe usage. All components are
mounted on a board and controlled by a custom straight-through RJ-45 connection. Each 4 channel
board contains an etched PCB with the necessary dual 74HC595 shift registers and TIP120 transistors
to drive all 12 RGB connections of the 4 channel array. Each board is then connected by said RJ-45 to a
printed enclosure containing RJ-45 ports linked and broken out from a 25 pin DSUB connection, which
links everything neatly back to the host Arduino device housed within the Control Console.

In summary:
[LED Boards] → [RJ-45] → [DSUB25 Breakout Box] → [25 pin LPT cable] → [Arduino] → [rPi]

Section 2 – Modules (Python Sources)

The Python script that drives the Control Center is comprised of several systems, in order to
achieve more fluidity via object-oriented design. The main program hosts several subsystem objects:

Subsystems
File: VKCC_objGamePad.py
Desc: GamePad I/O. Used for rapid/programmable handheld control of the lighting system. Currently,
only the FBA is driven by a hardwired PS3 controller.

File: VKCC_objSerialManager.py
Desc: Serial COMMS bridge. Handles all communications/interpretations to and from the slave
devices.

File: VKCC_objScreenManager.py
Desc: GUI management class. Governs all GUI tasks, directing user input as needed to the currently
active screen class. All GUI drawing/blanking is done here.

These subsystems allow the main Python script to remain clean and topical, so that the source of
a given problem within the software can be more easily identified and remedied. The main program
only processes command line arguments, sets the display mode (console vs. Curses GUI) and
systematically loops through the system’s normal flow until either an error is encountered or we choose
to exit the program via <CTRL+C>.

The non-subsystem modules consist of the various screens used by the Curses GUI, global
object/constant definitions and file containing constant definitions only applicable to VKOS_CC in a
local scope (ie: The Arduino devices are not involved whatsoever).

All Other Modules
File Description

COMMS_Constants.py Definitions of constants shared by the Arduino
devices and the VKOS_CC Python script…
Basically, a way for the Arduino devices and the
Python script to easily communicate without
complicated overhead.

globals.py Global object definitons, accessible to the majority
of the VKOS_CC Python script. These include the
Screen Manager, GamePad and Serial Manager
object classes, as well as the slave device wrapper
object classes (explained below).

_screenCfgFBA.py Configuration screen for the FBA device.
_screenCfgMain.py Main configuration menu
_screenCfgSS.py SynthStation configuration menu. (Asthetically

implemented)
_screenCfgThor.py Thor configuration menu (Aesthetically

implemented)
_screenClientScan.py If specified when scanning for slave devices, this

screen appears to indicate progress.

_screenDisplayMapping.py Screen to display the current gamepad mapping
profile. (Aesthetically implemented)

_screenMain.py Main menu
_screenManualFBA.py Manual (keyboard-based) control of the FBA

device.
VKCC.py Main Python script.
VKCC_Constants.py Definitions of constants specific and local to the

VKOS_CC program. These constants do not
concern the Arduino devices whatsoever.

VKCC_objFBA.py Wrapper class for controlling the FBA slave device.
VKCC_objSynthStation.py Wrapper class for controlling the yet-to-be-

implemented Synth Station lighting controller.
VKCC_objThor.py Wrapper class for controlling the Thor acoustic

drum lighting module.

Section 3 – Program Topology

This section will address the general flow of the VKOS_CC Python script. In short, the
gamepad (PS3 controller) will almost always be used to control the FBA device while the keyboard
attached to the rPi running the main VKOS_CC Python script is used to navigate the configuration and
monitoring screens of the software. The gamepad I/O subsystem allows for different profiles to be used
for directing how the system is to respond to input from the gamepad, including cycling between
gamepad profiles.

The Python script begins by processing any command line arguments, initializes the gamepad
and screen manager subsystems and then enters the main program loop until either an error or escape
sequence is received (Such as <CTRL+C>). There is an option to mute all lighting effects while on the
main menu by pressing “*”, though this is largely meant as an immediate override for whatever
automation may be taking place. I may add in a condition or alternate key that will enable the white
floods on the FBA boards when mute is active, but that is not a priority at the moment.

Currently, the system only works via the Manual FBA screen or gamepad input. Future
revisions will include support for automation scripts, though there are currently a few routines in place
(such as the ColorWall FBA function).

